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Effect of inertia in Rayleigh-Bénard convection

M. Breuer, S. Wessling, J. Schmalzl, and U. Hansen*
Institut für Geophysik, Westfa¨lische Wilhelms-Universita¨t Münster, D-48149 Mu¨nster, Germany
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We have investigated the influence of the Prandtl number on the dynamics of high Rayleigh number thermal
convection. A numerical parameter study in a three-dimensional Rayleigh-Be´nard configuration was carried
out, where we varied the Prandtl number between 1023<Pr<102. The Rayleigh number was fixed at a value
of Ra5106. Our main focus lay on the question how the value of the Prandtl number affects the spatial
structure of the flow. We investigated the functional dependence of the Nusselt number and the Reynolds
number and compared our results with a recent theoretical approach of Grossmann and Lohse@J. Fluid Mech.
407, 27 ~2000!; Phys. Rev. Lett.86, 3316~2001!#.
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I. INTRODUCTION

Vigorous thermal convection is a fundamental pheno
enon, largely governing the dynamics of natural systems
the atmosphere, oceans, and planetary interiors. It also p
an important role in technical applications like process te
nology. The past years saw active research in the field wh
many efforts centered around scaling laws between the
trol parameter Rayleigh number Ra and the output par
eters Nusselt number Nu and Reynolds number Re. Whil
far no universal scaling law for the Nusselt-Rayleigh num
relation could be found@1# it became clear that an unde
standing of the output parameters on the other control par
eter, i.e., the Prandtl number Pr is crucial to fully understa
the dynamics. Systematic investigations on the influence
Pr on the flow dynamics were hampered by the relative
ficulties to perform appropriate experiments in the labo
tory. Also numerical approaches today still face considera
problems to deal with high Rayleigh number convection w
varying Prandtl number. However, the situation has rece
improved. Laboratory experiments using appropriate liqu
and gases can span a significant range of Prandtl num
@2–5#. Especially numerical studies have been applied
study effects of largely varying Prandtl numbers@6#. This is
of special interest in the geophysical context, since
Prandtl number in different geophysical systems~e.g., for the
molten Earth’s core and the viscous Earth’s mantle! ranges
between rather extreme values~from 0.1 to virtual infinity
for the specified systems!. In particular recently a new theor
was pushed forward by Grossmann and Lohse@7,8# making
several predictions with respect to global output parame
but also with respect to the development of thermal and
cous boundary layers and their influence on the scaling la
In the present study we have fixed the Rayleigh number
value at 106 and have varied the Prandtl number in a range
1023<Pr<102. We analyze some assumptions forming t
basis of the Grossmann-Lohse theory and show that t
assumption of the type of the viscous boundary layer is
in accordance with our results. Nevertheless key predicti
of the theory came out to be in close agreement with
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results. And up to now widely overlooked property of th
flow is the ratio of toroidal to total energy which is strong
decreasing with increasing Prandtl number. We consider
to be characteristic for the different type of dynamics at lo
and high Prandtl numbers.

II. MODEL AND NUMERICAL SETUP

We studied Rayleigh-Be´nard convection of a Boussines
fluid in a three-dimensional~3D! Cartesian domain by mean
of a numerical model. The describing set of equations,
duced from conservation of mass, energy, and momentu
given in nondimensional form by

1/Pr~] tu1u•“u!1“p2“

2u2RaTez50, ~1!

] tT1u•“T2“

2T50, ~2!

“•u50, ~3!

where u is the velocity vector,p the pressure without the
hydrostatic component,T denotes the temperature, andez is
the unit vector inz direction. The equations have been ma
nondimensional using the heightd of the box, the tempera
ture differenceDT5Tbot2Ttop between the bottom and th
top and the thermal diffusion timetk5d2/k. The similarity
parameters, the Rayleigh number Ra and the Prandtl num
Pr, are defined by

Ra5agDTd3/nk, Pr5n/k, ~4!

wherea is the thermal expansivity,g is the acceleration due
to gravity, n denotes the kinematic viscosity, andk repre-
sents the thermal diffusivity. At the upper and lower surfac
we employed no-slip conditions for the velocity while th
temperature was kept constant (Tbot51,Ttop50). The side-
walls were adiabatic and free-slip conditions were adap
for the velocity. The aspect ratio was set toA52. In numeri-
cal experiments it is common to use free-slip conditions
the velocity field on the vertical walls in order to minimiz
sidewalls effects, in particular to avoid the generation of v
cous boundary layers at the sidewalls~cf. Ref. @1#!. The nu-
merical integration of Eqs.~1!–~3! was performed by a finite
volume multigrid method, with a time-stepping schem
©2004 The American Physical Society02-1
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based on an explicit Adams-Bashforth and the impl
Crank-Nicolson method. The solution method is essenti
based on that of Trompert and Hansen@9#, with some modi-
fications described in Schmalzlet al. @6#. Due to the exis-
tence of strong vertical gradients of the temperature and
locity field near the upper and lower boundaries~cf. Sec. IV!
one must assure that these boundary layers are appropr
resolved. Following Gro¨tzbach@10# there should be at leas
3–5 grid points in these boundary layers for sufficient ac
racy. Our method allows for nonequidistant grids in vertic
direction. The position of the grid points are defined by ro
of Chebyshev polynomials,

z~ i !5
~ztop1zbot!

2
2

~ztop2zbot!

2 cos~pb!

3cosFpS b1
~ i 21!~122b!

NZ D G ,
i 51, . . . ,NZ11, ~5!

whereNZ is the number of control volumes in thez direction
andb controls the degree of the refinement. Most model ru
were carried out on a 64364332 grid. It turned out that grid
refinement was necessary for Prandtl numbers less than
order to fulfill the criterion mentioned above. In experimen
with Pr>5 boundary layers were accurately resolved by
uniform grid. In order to check our results for unde
resolution we compared the temporal evolution of the N
selt number for two grid configurations. For both, a lo
value of the Prandtl number@Pr50.001, Fig. 1~a!# and a
higher value@Pr530, Fig. 1~b!#, we monitored the evolution
of the flow on a 64364332 and on a finer grid consisting o
1283128364 nodes. In all cases the Rayleigh number w
set to Ra5106. Figures 1~a! and 1~b! display the time history
of Nu. Clearly both resolutions provide satisfactory agre
ment. We conclude this also from the observation that
mean values of Nu, averaged over the time span show
Fig. 1, deviate by less than 3% for both Prandtl numbe
Grötzbach @10# points out that specially Nu is a sensitiv
indicator of under-resolution. The close agreement of
mean values thus points towards proper resolution. Ano
useful test to check the results against under-resolution
compare the Nusselt number, averaged over the depth o
fluid layer, Nuav5*z50

1 dz(^wT&h2(]/]z)^T&h), with the
Nusselt number at the upper surface, Nutop52(]/]z)
3^T&huz51 (^•&h denotes the horizontal mean!. For proper
resolution the time averaged values should yield the sa
result. In all runs we found the two values to be virtua
identical, and thus this constraint to be well satisfied. For
model runs the conductive state with a superimposed t
perature perturbation was employed as initial condition. T
calculations were evolved until transients faded away an
statistically stationary state was reached. To do so the ca
lations were carried out for at least 70 large-eddy-turno
times~defined ast5d/Urms @11#, Urms being the root-mean
square velocity!.
02630
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III. SPATIAL STRUCTURE OF THE FLOW

In order to investigate the influence of the Prandtl num
on the flow properties in thermal convection, we carried o
a numerical parameter study in a three-dimensio
Rayleigh-Bénard configuration with an aspect ratio ofA
52, subject to rigid conditions at the upper and low
boundaries and stress-free sidewalls. The Rayleigh num
was fixed at a value of Ra5106, high enough to get strong
time dependent flow dynamics. We varied the Prandtl nu
ber over a wide range from Pr51023 up to Pr5100.

In order to explore the effect of inertia on convection
seems useful to first look at the spatial structure of the fl
before applying more sophisticated diagnostics. Visualizat

FIG. 1. The influence of the spatial resolution on the tempo
evolution of the Nusselt number for~a! Pr50.001 and~b! Pr530.
We compare runs developed on a 64364332 grid against runs with
a higher grid resolution of 1283128364.
2-2



EFFECT OF INERTIA IN RAYLEIGH-BÉNARD CONVECTION PHYSICAL REVIEW E69, 026302 ~2004!
FIG. 2. ~Color! Snapshots of the temperature field, illustrated by the temperature isosurface for the nondimensional value ofT50.6 and
temperature cross sections at three side walls, for the values of the Prandtl number:~a! Pr50.025, ~b! Pr50.1, ~c! Pr51, and ~d! Pr
5100.
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is a powerful tool and the relative ease with which it can
used is certainly one of the advantages of numerical stud
In laboratory experiments visualization can be a formida
task. In Figs. 2~a!–2~d! snapshots of the temporal evolutio
of the temperature fields for four different values of t
Prandtl number are shown@Pr50.025~a!, 0.1 ~b!, 1 ~c!, 100
~d!#. Temperature is dimensionless and varies betweeT
51 at the bottom andT50 at the top. We picked theT
50.6 isosurface because it nicely displays the structure
the warm up-wellings. Further, color coded cross section
the temperature on three sidewalls illustrate the distribu
of temperature. The down-welling currents behave sy
metrically and are not shown here. On a first glance, we
identify some obvious differences in the thermal struct
between low and high values of the Prandtl number. At l
Prandtl numbers@Pr50.025 and 0.1, Figs. 2~a! and 2~b!# a
large-scale circulation develops, extending from one side
the box where an up-welling has developed to the dow
welling at the opposite side. At a value of Pr51 @Fig. 2~c!#
plumelike structures have developed. They are, however,
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pushed by the large-scale flow towards the sidewalls of
box. At Pr5100 @Fig. 2~d!# the plumes are fully develope
and give rise to a multicellular structure of the flow. Th
largest scale of the flow is now given by the size of the ce
rather than by the full length of the box. Our finding agre
well with the results of Verzicco and Camussi@12# who per-
formed numerical experiments in a cylindrical cell. The
also report a change from a large-scale flow dominated h
transport at low values of the Prandtl number to a regime
high Prandtl numbers where the heat transport is mainly
to thermal plumes. An experimental study revealing t
dominance of thermal plumes with regard to heat transpo
high Pr has been described by Cilibertoet al. @13#.

To further investigate the thermal flow structure we ha
calculated the spatial temperature probability density fu
tion ~PDF! for different values of the Prandtl number@Figs.
3~a!–3~d!#. The PDF’s can be derived from the histogram
the spatial temperature distribution@14# with

pd f~Ti !'
ni

ND
, ~6!
2-3
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FIG. 3. The spatial temperature probability density function~PDF! averaged in time in a log-lin scale for the Prandtl number~a! Pr
50.025~the dashed line represents the Gaussian fit!, ~b! Pr50.1, ~c! Pr51, and~d! Pr5100.
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of
ni being the number of registrations in the intervalTi , N the
total amount of registrations, andD is the bin width. The
PDF’s have been time averaged over time intervals, su
ciently long to exhibit quasistationary behavior. These spa
PDF’s should not be mixed up with the PDF’s common
derived from experimental measurements of the temp
evolution of the temperature at fixed points@15–17#. We
employ the PDF’s as a tool to characterize the spatial st
ture of the temperature field. For low Prandtl numbers@Pr
50.025, Fig. 3~a!# the spatial PDF shows a clear Gauss
shape. For Pr50.1 and Pr51 @Figs. 3~b! and 3~c!# the PDF
starts to deviate from a pure Gaussian shape. In the
Prandtl number case@Pr5100, Fig. 3~d!# the PDF possesse
a more exponentially behavior with long tails. This impli
that the temperature field is spatially uncorrelated for l
values of the Prandtl number, while the exponential shap
high Pr indicates that the temperature field possesses sp
coherent structures@18#. We will show subsequently that thi
change of the PDF’s is associated with the presence of t
mal boundary layers. The change of flow structure with
creasing Pr is also revealed in Fig. 4. Here snapshot
streamlines in the horizontal planez50.5 are displayed. Fo
low Prandtl numbers@Pr50.025, 0.1, and 1, Figs. 4~a!–
4~c!# we observe fine structures characterized by small lo
vortices. At a Prandtl number of Pr5100 the vortices have
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mostly disappeared and a more laminar flow has emerged
what follows we will demonstrate that the appearance
small horizontal vortices is related to the toroidal compon
of the flow. Due to incompressibility~u is solenoidal! the
velocity field can be decomposed into a poloidal and a t
oidal component

u5“3“3~fez!1“3~cez!, ~7!

f, c are the poloidal and the toroidal scalar fields, resp
tively, andez is the unit vector inz direction. From the rela-
tion between thez component of the vorticityvzª]v/]x
2]u/]y and the toroidal scalar fieldc

vz52¹h
2c, ~8!

(¹h
2 denotes the horizontal Laplacian! it is obvious, thatc

describes the horizontal vortices in the flow field, called t
toroidal motion. At a first glance, Fig. 4 leaves already t
impression that the small scale vortices, i.e., the toroidal m
tion, gradually decreases with increasing Prandtl num
This result is corroborated in Fig. 5 showing the ratio
toroidal energyEtor and total kinetic energyEkin as a func-
tion of the Prandtl number. The total kinetic energyEkin and
the toroidal fractionEtor are derived from
2-4
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FIG. 4. Snapshots of velocity
stream lines projected onto th
horizontal plane atz50.5 for dif-
ferent Prandtl numbers:~a! Pr
50.025, ~b! Pr50.1, ~c! Pr51,
and ~d! Pr5100.
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Ekinª^u2&V, EtorªK S ]c

]x D 2

1S ]c

]y D 2L
V

, ~9!

^•&V denotes the spatial mean and — denotes the averag
time. In Fig. 5 one can clearly identify two regions: One, f
Pr,1, exhibits a virtual constant value ofEtor of about 30%
of the total kinetic energy. The other, for Pr.1, is character-
ized by a drastic decrease in the fraction of the toroidal
ergy with increasing Prandtl number down to less than 1%
Pr5100. We reported the Prandtl number dependence of
toroidal motion in a former study@6#, where we derived
similar results. In that study we employed stress-free con
tions, rather than the rigid conditions as used in this stu
Thus, it seems to be a fundamental result that, indepen
of the boundary conditions, the flow contains a strong tor
dal component, as Pr is low, while at high Pr it is domina
by poloidal motion. This result is also consistent with the
retical considerations. Taking the curl of the equation of m
tion @Eq. ~1!# it can be shown that in the limit of Pr→` the
toroidal flow component vanishes@19#, what is also related
to the fact that the Reynolds number Re tends to zero w
increasing Prandtl number. We will discuss the Prandtl nu
ber dependence of the Reynolds number in Sec. V.

IV. VISCOUS AND THERMAL BOUNDARY LAYERS

The existence of thermal and viscous boundary layer
Rayleigh-Bénard convection is a well known phenomen
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and has been thoroughly investigated by different gro
@2,20,21#. The behavior of these boundary layers has a str
influence on the global transport processes and such for
Nusselt and the Reynolds number@1,22#. In this section we
will discuss the influence of the Prandtl number on the thi
ness of the viscous and thermal boundary layers. Figur

FIG. 5. Ratio of the energy due to toroidal motion to total k
netic energy in percent. For low Prandtl numbers (Pr,1) the frac-
tion of the toroidal flow motion is nearly constant at a value
about 30% whereas for Pr.1 there is a strong decrease in th
fraction of the toroidal flow motion with increasing Prandtl numb
down to less than 1% for Pr5100.
2-5
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shows time averaged depth profiles of the horizontal m
temperature for different values of the Prandtl number. T
regions can be distinguished. Near the upper and lo
boundary layers steep temperature gradients develop a
cent to a well-mixed almost isothermal bulk. Followin
Verzicco and Camussi@12#, we defined the thermal boundar
layer thicknesslT as the depth where a linear fit of th
temperature profile near the surfaces crosses the mean
peratureT50.5. The vertical heat transport through the
thermal boundary layers is mainly conductive because
velocity drops to zero near to the walls. Thus one can ded
an approximative relation between the Nusselt number
and the thicknesslT of the thermal boundary layer@20#
given by

lT'
1

2
Nu21. ~10!

Due to no-slip conditions, as applied here, the velocity dr
from a characteristic value in the bulk to zero at the bou
aries. The layer across which this drop takes place defi
the viscous boundary layer. In Fig. 7 depth profiles of
temporally averaged horizontal root-mean-square velo
Uh_rms are plotted for various values of the Prandtl numb
All profiles show ~similar to the temperature profiles! a
strong increase in the velocity near the walls with a disti
peak. Similar to Kerr and Herring@1#, we defined the thick-
ness (lu,max) by the local maximum in the velocity dept
profile ~cf. Fig. 7!. A central assumption in the theory o
Grossmann and Lohse@7# is that the viscous boundary laye
lu approximatively scales as

lu;Re21/2. ~11!

FIG. 6. Temporal averaged depth profiles of the horizontal m
temperature for Pr50.025,0.1,1,100. For Pr5100 the definition of
the thermal boundary layer thicknesslT is illustrated.lT is defined
as the depth where a linear fit of the temperature profile near
bottom crosses the mean temperatureTmean50.5.
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They assume a large-scale dominated flow together wit
laminar viscous flow of Blasius type in the boundary lay
@the derivation of Eq.~11! can be found, e.g., in Landau an
Lifshitz @23# §39#. We will return later to the question i
these estimates oflT @Eq. ~10!# and lu @Eq. ~11!# are in a
good agreement with our results. First we will discuss h
the viscous and thermal boundary layers are influenced
the value of the Prandtl number. We determined the thickn
of the thermal and the viscous boundary layers, accordin
the definitions, as given above. The results are compiled
Fig. 8, displaying the thicknesses of both types of bound
layers as a function of the Prandtl number. The therm
boundary layerlT decreases with increasing Prandtl numb

n

e

FIG. 7. Temporal averaged depth profiles of the root-me
square horizontal velocityUh_rms for Pr50.025,0.1,1,100. In addi-
tion, the definition of the viscous boundary layer thicknesslu,max is
illustrated for Pr5100. lu,max is defined as the distance betwee
the position of the maximum value ofUh_rms in the depth profile
and the bottom.

FIG. 8. Thickness of the thermal boundary layerlT and the
viscous boundary layerlu,max vs the value of the Prandtl numbe
For low Prandtl numbers the viscous boundary layer is embedde
the thermal boundary layer whereas for high Prandtl numbers
viscous boundary layer exceeds the thermal one with a crossov
around Pr50.3.
2-6



de
0.
o
er

a
et
re
et

t

ne
n

dt
ld
vi
sin

e

F
v
rm

n
o

ye
10
ca
n-

nd
th
in

er

e

with
oc-

q.
ry

of a
as
f

by
r-

t ar-
is-

law
ly a
this

e
e,
e

y
s
d-

y-
ata

n of
10

ry
tl
the

o -
t
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whereas the viscous boundary layerlu,max increases. For
low values of Pr the viscous boundary layer is embed
within the thermal boundary layer. At values of Pr around
we observe a crossover and from that value of Pr the visc
boundary layer is thicker than the thermal one. In a num
cal study, but in a spherical shell domain, Tilgner@24# found
a similar dependence of the viscous and thermal bound
layers on the Prandtl number. Due to the spherical geom
he finds the thicknesses of the boundary layers to be diffe
at the inner and outer boundary. In our Cartesian geom
the boundary layer thicknesses are for symmetry reasons
same at the lower and upper boundary~cf. Figs. 6 and 7!.
The viscous boundary layer reaches an asymptotic thick
for Pr.10 ~Fig. 8! and does not further grow. Grossman
and Lohse@8# predicted such a behavior in the large Pran
number limit. They assume a critical value of the Reyno
number in the case of large Prandtl numbers where the
cous boundary layer does not further increase with increa
Prandtl number.

Now we return to the question if the boundary layers ob
the relations as given in Eqs.~10! and ~11! which form an
essential basis of the theory of Grossmann and Lohse. In
9 the thickness of the thermal boundary layer is plotted
the time averaged Nusselt number. A power law of the fo
lT;Nu20.9460.02 ~the error indicates the standard deviatio!,
being in close agreement with the theoretical prediction
Eq. ~10!. The dependence of the viscous boundary la
thickness on the Reynolds number is displayed in Fig.
We defined the Reynolds number Re over the large-s
horizontal wind by the local maximum of the nondime
sional horizontal velocity~cf. Fig. 7!

Re5Uh_rms
max /Pr. ~12!

As mentioned above we observe a regime for high Pra
numbers where the viscous boundary layer does not fur
increase with increasing Prandtl number. The correspond
behavior is displayed in Fig. 10. For low Reynolds numb
~corresponding to high Prandtl numbers! the viscous bound-
ary layer reaches an asymptotic thickness. For higher R

FIG. 9. Thickness of the thermal boundary layerlT vs the Nus-
selt number. The solid line gives a data fit with a power law
lT;Nu20.9460.02.
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nolds numbers the boundary layer thickness decreases
increasing Re. The transition between those two regimes
curs at a critical Reynolds number Recrit of about 20. A fit of
the data provides the power lawlu,max;Re20.23160.011

which significantly deviates from the relation given in E
~11!. This relation forms a central assumption in the theo
of Grossmann and Lohse and relies on the existence
purely laminar flow of Blasius type. This discrepancy w
also reported in Ref.@2#, an experimental investigation o
viscous boundary layer scaling.

The specific definition of the viscous boundary layer
the position of the local velocity maximum, though appa
ently sensible and as such commonly used, is somewha
bitrary. Other definitions are feasible and possibly the d
crepancy between our numerically determined scaling
and that as assumed in Grossmann-Lohse theory is on
consequence of that specific definition. In order to check
we have employed a second definitionlu,l in of the viscous
boundary layer. Similar to the thermal boundary layerlu,l in
is defined by a linear fit, here of the velocity profile, in th
vicinity of the boundary. The intersection of the straight lin
resulting from the linear fit, with the vertical tangent to th
local maximum in the profile~cf. Fig. 7! defines the bound-
ary layer thicknesslu,l in . In Fig. 11 the viscous boundar
layer thicknesslu,l in is plotted as a function of Reynold
number. Similar to the previously employed defined boun
ary layer,lu,l in is nearly constant for low values of the Re
nolds number. In the high Reynolds number regime the d
fit provides a power law oflu,l in;Re20.44260.016 which is
significantly closer to the scaling based on the assumptio
a Blasius-type boundary layer flow. A comparison of Figs.
and 11 points out a further discrepancy betweenlu,max and
lu,l in . The boundary layer thicknesslu,l in turns out to be
significantly thinner than the initially considered bounda
layer thicknesslu,max. Consequently, even for high Prand
numbers the viscous boundary layer remains thinner than
thermal one~cf. Fig. 12!. Differently from the boundary
layer definitionlu,max ~Fig. 8!, no crossover betweenlu,l in

f
FIG. 10. Thickness of the viscous boundary layerlu,max vs the

Reynolds number. Regime~a!: The viscous boundary layer thick
ness is nearly constant. Regime~b!: The solid line shows a data fi
by a power law oflu,max;Re20.23160.011.
2-7
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and lT takes place with increasing Prandtl number. On
one hand the scaling oflu,l in with Re is close to the theo
retical assumption of a Blasius type boundary layer flow,
the other hand it does not resemble the theoretical predic
of a changing hierarchy between viscous and thermal bou
ary layers in the high Prandtl number regime.

At this stage we note that the behavior of both bound
layers based on the definitionslu,max, lu,l in are not in full
agreement with the Grossmann-Lohse theory.

V. NUSSELT AND REYNOLDS NUMBER
VS PRANDTL NUMBER

It is common to describe the state, respectively, the
namics of thermal convecting systems using global out
parameters like the Nusselt and the Reynolds number.
Nusselt number Nu gives the ratio of actual heat transpo
the heat transport which would occur in a purely conduct
state. The Reynolds number Re measures the ratio of ad
tive momentum transport to the diffusive momentum tra
port in the equation of motion@Eq. ~1!# and indicates how
turbulent the velocity field is. Most of the theories of therm
convection assume a simple scaling relation between the
bal nondimensional output parameters like Nu and Re
the system parameters Ra and Pr. There is known evid
that the particular form of the scaling laws depends on
region in the parameter space, spanned by the system pa
eters Ra and Pr~for a review see Siggia@25#!. Recently
Grossmann and Lohse@7,8# have put forward a new theore
ical approach which allows them to predict scaling laws
Nu~Ra,Pr! and Re~Ra,Pr! for several flow regimes. They dis
tinguish these regimes by whether kinetic and thermal di
pation occurs mainly in the boundary layer or in the bu
and by whether the thermal boundary layer is thinner th

FIG. 11. Thickness of the viscous boundary layerlu,l in vs the
Reynolds number.lu,l in is defined by the intersection of the linea
fit near the boundary with the tangent to the local maximum in
velocity profile~cf. Fig. 7!. For low Reynolds numbers@regime~a!#
the viscous boundary layer thickness is nearly constant. In the
of high Reynolds numbers@regime~b!# the viscous boundary laye
thicknesslu,l in is decreasing as a function of Re following a pow
law of lu,l in;Re20.44260.016.
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the viscous one or vice versa. We will now present our
sults in the light of the theory of Grossmann and Lohse.

The Nusselt numbers obtained from our numerical exp
ments are plotted in Fig. 13 for different values of the Pran
number. We can identify two regions with different scalin
laws. For low Prandtl numbers, Pr!1, there is a clear in-
crease in the Nusselt number with increasing Prandtl num
In this regime our data are represented by a power law of
form Nu;Pr0.18260.012. At a Prandtl number of around 0.3
transition takes place and beyond that value the Nusselt n

e

se

FIG. 12. Thickness of the thermal boundary layerlT and the
viscous boundary layerlu,l in vs the value of the Prandtl numbe
Different to the viscous boundary layer definitionlu,max ~cf. Fig.
8!, lu,l in shows no crossover with the thermal boundary layer thi
nesslT in the high Prandtl number case.

FIG. 13. Values of the Nusselt number averaged in time vs
Prandtl number. The circles represents results from this study
rigid upper and lower boundaries. Squares represent former re
derived with stress-free boundary conditions published in Schm
et al. @6#. In both cases we can identify two different regions
which the increase of the Nusselt number with the Prandtl num
follows a different power law@rigid: ~a! Nu;Pr0.18260.012, ~b! Nu
;Pr0.03260.003, stress-free: ~c! Nu;Pr0.22460.017, ~d! Nu
;Pr0.01660.002]. The solid lines indicate those fits. Filled circles an
squares denote used data to determine fits. The bars represe
standard deviation of the temporal fluctuations.
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EFFECT OF INERTIA IN RAYLEIGH-BÉNARD CONVECTION PHYSICAL REVIEW E69, 026302 ~2004!
ber virtually saturates. In fact our data still show a wea
increasing Nu, represented by a power law N
;Pr0.03260.003. The two regimes are portrayed in Fig. 1
~lower curve!. The low Prandtl number branch correspon
to the regionII l in the Grossmann and Lohse picture and
characterized by a thin viscous boundary layer embedde
the thermal one. Dissipation of kinetic energy occurs mai
in the bulk while thermal dissipation takes place in the th
mal boundary layers. We have already demonstrated in F
that the viscous boundary layer lies in fact within the therm
layer for low values of Pr. For this regime Grossmann a
Lohse predict a power law of Nu;Pr1/5 thus being in close
agreement with our results. The high Prandtl number bra
corresponds to a region which according to Grossmann
Lohse is characterized by dissipation, both thermal and
netic, taking place mainly in the boundary layers and wh
no further increase of the viscous boundary layer can
expected. Following the theory Nu does not depend on P
this region. Our results reveal that the viscous bound
layer does not further grow with increasing Pr~cf. Fig. 8!.
The exponent in the power law is very small. Thus we co
sider our results to be in close agreement with the predic
of Grossmann and Lohse@7,8#.

The Reynolds number dependence on the Prandtl num
is displayed in Fig. 14~lower curve!. Similar as for the Nus-
selt number we can define two regions with different scal
behavior, i.e., different power laws in the functional depe
dence of Re~Pr!. For low Prandtl numbers our data yield
power law of Re;Pr20.60760.012, whereas for high Prandt
numbers the Reynolds number scales with
;Pr20.99860.014. These results are almost identical with t
predictions of Grossmann and Lohse@7,8#. For small Prandtl
numbers ~regime II l) they derive a power law of Re
;Pr23/5 and in the high Prandtl number regime (I `

.) a power
law of Re;Pr21. Verzicco and Camussi@12# performed a
numerical study in a cylindrical geometry and also report

FIG. 14. Values of the Reynolds number vs the Prandtl num
Similar to Fig. 13 the circles represents results of this study~rigid
case!, whereas the squares denote results of the stress-free
published in Ref.@6#. In both cases, two regions with differen
power laws can be identified: rigid case:~a! Re;Pr20.60760.012, ~b!
Re;Pr20.99860.014, stress-free case:~c! Re;Pr20.60560.013, ~d! Re
;Pr20.91660.014.
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finding of different regions in the Nu~Pr! and Re~Pr! rela-
tions. Quantitatively, however, their results differ from ou
For low values of Pr they obtain an exponent of 0.14 for t
Nu~Pr! relation (0.182, this study! and20.73 for the Re~Pr!
relation (20.607, this study!. The differences can probabl
be addressed to the differences in geometry and boun
conditions. In their study no-slip conditions were applied
the sidewalls while we kept the sidewalls stress-free.

Regardless those differences, a change in the system
havior, reflected by a change in the scaling laws at a Pra
number of around 1 seems to be an established fact. Wh
the mechanism behind this transition? Most theories add
this transition to a change in the hierarchy between the
cous and thermal boundary layers~e.g., Refs. @26,7#!.
Namely, they assume that at low values of Pr the visc
layer is nested within the thermal one and that with incre
ing Pr the thermal boundary layer decreases while the
cous layer grows. A crossover occurs and at large value
Pr the viscous and thermal boundary layer thicknesses re
an asymptotic value. This picture corresponds almost exa
to our observations~cf. Fig. 8!, if we consider the viscous
boundary layer definition oflu,max. Otherwise, the viscous
boundary layer based on the definition oflu,l in does not
show a crossover with the thermal boundary layer in the h
Prandtl number regime and hence contradicts in this p
with the theory~cf. Fig. 12!. However the change of hierar
chy cannot be the cause behind the transition in the sca
laws of Nu~Pr! and Re~Pr!. Strictly spoken, the presence of
viscous boundary layer and such also its growth is not n
essary for this transition to take place. We have carried o
virtually identical set of experiments, however with stres
free conditions all around the box. Under such circumstan
only thermal boundary layers are present, whereas a visc
boundary layer does not exist@6#. The main result of this
study is shown in Figs. 13 and 14~upper curves!. For both,
rigid and stress-free conditions Nu and Re show quant
tively a very similar functional dependence on Pr. In eith
case a transition in the Nu~Pr! and Re~Pr! curve is observed
and also the describing power laws yield similar values~cf.
Figs. 13 and 14!. In fact the presence of a viscous bounda
layer seems only to affect the actual values of the Nus
and the Reynolds number, however not the dependenc
the Prandtl number. Seemingly the existence of a visc
boundary layer is not a necessary condition for the transi
in Nu~Pr! and Re~Pr! to take place. Thus, the mechanis
behind the transition in the power laws cannot be the cha
of hierarchy of viscous and thermal boundary layers.
present an alternative explanation in the following sectio

VI. SUMMARY AND DISCUSSION

We have investigated the influence of the Prandtl num
on the dynamics of thermal convection. A numerical para
eter study has been carried out in a 3D Rayleigh-Be´nard
configuration for Prandtl numbers 1023<Pr<102. By flow
visualization we studied how the spatial structure of the fl
is affected by changes in Prandtl number. We further inv
tigated the functional dependence of the global parame
Nu and Re on the Prandtl number. The results are comp

r.

se,
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BREUERet al. PHYSICAL REVIEW E 69, 026302 ~2004!
with those from a recent theoretical approach by Grossm
and Lohse@7,8#.

We have identified two different regimes:
Low Prandtl number regime(Pr ! 1). In this regime heat

transport is dominated by one large-scale circulation. T
regime is characterized by a high ratio of toroidal energy
total kinetic energy. Due to no-slip conditions the stro
horizontal wind near the top and the bottom walls crea
viscous boundary layers which are embedded within the t
mal boundary layers.

High Prandtl number regime(Pr @ 1). The high Prandtl
number regime is characterized by plume dominated h
transport. The flow motion is mainly poloidal and the fra
tion of toroidal energy on the total kinetic energy tends
zero with increasing Pr. Viscous boundary layers could a
be identified in the high Prandtl number regime, but differe
from the low Prandtl number regime they reach a satura
state with increasing Pr.

In both regimes the power laws for Nu~Pr! and Re~Pr! as
derived from our calculations match closely with those o
tained theoretically by Grossmann and Lohse for the app
priate regimes. Our experiments also confirm the assump
that for low Pr the viscous boundary layer is thinner than
thermal one and that the viscous boundary layer ultima
stops growing, once a Prandtl number higher than ten
reached. However the behavior of the viscous boundary la
deviates from the theoretical prediction in some sense.
change of hierarchy between thermal and viscous boun
layers, as anticipated from the work of Grossmann a
Lohse is only observed for a viscous boundary layerlu,max
determined by the local velocity maximum. The bounda
layerlu,l in , based on a linear fit of the velocity profiles ne
the boundaries does not show such a crossover. Conver
. E

y

uid

02630
n

e
o

s
r-

at

o
t
d

-
o-
on
e
ly
is
er
e
ry
d

y

ely,

lu,l in obeys a power lawlu,l in;Re20.44260.016, being close
to the predicted scaling law oflu;1/ARe, whilelu,max is
related to Re by the dependencelu,max;Re20.23160.011, thus
significantly deviating from the theoretical value. None
the employed velocity boundary definitions yield a behav
that closely resembles the theoretical predictions. Still,
predicted dependences of Nu~Pr! and Re~Pr! agrees well with
our results, indicating that the viscous boundary layer d
not affect much the scaling laws for Nu~Pr! and Re~Pr!. Fur-
ther strong evidence for the relative insignificance of the
havior of the viscous boundary layer is provided by a set
runs carried out under stress-free, but otherwise ident
conditions @6#. In such a configuration, viscous bounda
layers do not exist, i.e., their thickness is zero. Despite
absence of viscous boundary layers, Nu and Re show qu
tatively the same dependence on Pr as for rigid bounda
This means that the presence of viscous boundary laye
certainly not a necessary condition for the observed phen
enon to occur and it is indeed unlikely that the viscous lay
play an important role in this respect.

In our view it is remarkable that the significance of toro
dal motion changes noticeably across the transition from
low to the high Prandtl number branch indicating that t
two dynamical regimes are characterized by different tra
port properties.
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